
ART: Adaptive Retransmission for Wide-Area Loss
Recovery in the Wild

Tong Li†, Wei Liu†, Xinyu Ma†, Shuaipeng Zhu†, Jingkun Cao†, Senzhen Liu‡, Taotao Zhang‡,
Yinfeng Zhu‡, Bo Wu§, and Ke Xu§

Renmin University of China†, ByteDance‡, Tsinghua University§

Abstract—Packet losses significantly impact the user experi-
ence of wide-area applications such as content distribution and
remote procedure call (RPC) based services. However, our pro-
duction network measurement studies show that the legacy loss
recovery is far from satisfactory due to the wide-area loss charac-
teristics (i.e., dynamics and burstiness) in the wild. In this paper,
we propose a sender-side Adaptive ReTransmission scheme,
ART, which minimizes the recovery time of lost packets with
minimal redundancy cost. Distinguishing itself from forward-
error-correction (FEC), which preemptively sends redundant
data packets to prevent loss, ART functions as an automatic-
repeat-request (ARQ) scheme. It applies redundancy specifically
to lost packets instead of unlost packets, thereby addressing the
characteristic patterns of wide-area losses in real-world scenarios.
We implement ART upon QUIC protocol and evaluate it via both
trace-driven emulation and real-world deployment. The results
show that ART reduces up to 34% of flow completion time (FCT)
for delay-sensitive transmissions, improves up to 28% of goodput
for throughput-intensive transmissions, and saves up to 90% of
redundancy cost.

Index Terms—loss pattern, loss recovery, redundancy

I. INTRODUCTION

The ubiquitous wide-area packet loss is a critical fac-
tor affecting the performance of geo-distributed applications
including both delay-sensitive applications (e.g., live video
streaming, interactive online gaming, and remote procedure
call (RPC) based services [1]) and throughput-intensive ap-
plications (e.g., disaster recovery, cloud migration, and data
backup-and-archiving [2]). Take a famous content delivery
network (CDN) platform as an example [3], the flows incur an
average 5.2% packet loss rate in Turkey and 3.8% in Brazil,
respectively. The flow completion time (FCT) in these regions
is enlarged because the high loss rate introduces head-of-line
(HOL) blocking and even incurs service failure when loss
recovery is excessively delayed.

There exist two fundamental ways of loss recovery in
transmission control, i.e., forward-error-correction (FEC) [4]–
[6] and automatic-repeat-request (ARQ) [7]–[11]. However,
it is well-studied that FEC is far from satisfactory due to the
wide-area loss characteristics such as burstiness in the wild [6].

This work is supported by the fund from ByteDance, the NSFC Projects
(No. 62202473 and No. 61932016), the fund for building world-class universi-
ties (disciplines) of Renmin University of China, the China National Funds for
Distinguished Young Scientists (No. 61825204), and the Beijing Outstanding
Young Scientist Program (No. BJJWZYJH01201910003011).

Performance Rank
CDN Vendor

Market Share

User

Vendor3

2/7 1/74/7

Vendor1

Network

Vendor2

Rank Vendor

Vendor1

Vendor2

Vendor3

Fig. 1: An example of the multi-supplier market for wide-
area applications.

Although some works are proposed to protect against bursts
of losses [5], [6], they require dual-side (i.e., CDN server
and client-side application) modifications. These FEC-based
advancements might suffer from deployment issues in the
multi-supplier CDN market. As shown in Figure 1, application
operators (e.g., TikTok Live) usually apply the Multi-Supplier
Strategy [12] in the CDN market. As a result, it is the CDN
vendor’s duty that optimize the transmission performance (e.g.,
loss recovery), according to which the application operators
will choose the better-performed CDN vendors to carry more
traffic (i.e., larger market share). In this case, only server-
side sending policies can be adjusted by the selected CDN
vendors, which lack the proper authority to synchronize client-
side control rules.

In fact, most modern applications only apply the ARQ
paradigm to control loss tolerance as the commercial solution,
which retransmits data once any packet is detected lost. Un-
fortunately, from our production network measurement studies,
we find that wide-area loss shows characteristics of dynamics
and burstiness in the wild (see §II). We further find that the
legacy ARQ-based loss recovery induces unexpected latency
due to poor adaption to these loss characteristics. Specifically,
it still suffers from both data reassembling starvation and
receiving buffer starvation in delay-sensitive transmissions and
throughput-intensive transmissions, respectively (see §III).

In this paper, we propose the adoption of FEC to improve
loss recovery in ARQ-based protocols. Unlike the traditional
FEC-based approach, which involves sending redundant unlost
data packets, our method focuses on sending redundant lost
packets without the need for coding, thereby avoiding dual-
side modifications and expediting the loss recovery process.
Furthermore, our approach has the potential to eliminate the
costly traffic overhead typically associated with traditional979-8-3503-0322-3/23/$31.00 ©2023 IEEE

Brazil
IndonesiaJapan

Argentina UK

Region

0

5

10
Lo

ss
 R

at
e(

%
)

(a) Loss distribution in different regions

0 5 10 15 20 25
Time(h)

2.5

3.0

3.5

4.0

4.5

Lo
ss

 R
at

e(
%

)

(b) Loss dynamics

Fig. 2: Examples of loss dynamics in the wild.

FEC. This is due to the fact that the number of lost packets
is usually much smaller than the number of unlost packets.
Introducing redundancy to retransmission may seem straight-
forward, but in practice, the dynamics and burstiness of packet
loss present several challenges that must be addressed: (i)
The trade-off between performance and cost is decided by the
redundancy level, which refers to the number of replicas of a
lost packet. The optimal redundancy level for each loss varies
with the dynamics of the loss, and striking the right balance is
crucial. (ii) A loss event usually contains multiple consecutive
lost packets (i.e., burstiness), the redundant replicas might be
lost together again when burst losses occur.

To tackle these issues, we present ART1 (Adaptive ReTrans-
mission), a sender-side approach without requiring any modifi-
cations on the receiver side. Simple but useful, ART overcomes
the above-mentioned challenges through two tightly coupled
systems: Redundancy Adaption and Replica Scheduling. To
adapt to loss dynamics, Redundancy Adaption alters the re-
dundancy level step by step using the method of test and
then verification. To deal with the loss burstiness, Replica
Scheduling schedules the replicas in a random number of
sending cycles (one cycle equals the interval of sending one
packet at a specific pacing rate). With Redundancy Adaption
and Replica Scheduling, ART can achieve consistently rapid
loss recovery with the minimized cost of redundant traffic.

The contributions are summarized as follows.
• We conduct large-scale measurement studies on the wide-

area loss characteristics in the wild, and disclose that
dynamics and burstiness are two key features of loss
in practice (see §II). And then we identify the critical
challenges when facing the wide-area loss characteristics
(see §III).

• We propose ART that can dynamically adjust the re-
dundancy level according to the loss dynamics, and can
randomly schedule the sending of each replica so as to
protect against bursts of losses (see §IV and §V).

• We implement ART prototype in the user-space QUIC
protocol and deploy it on both the testbed and production
network (see §VI). The experimental results demonstrate
the practicability and profitability of ART, in which ART
can accelerate loss recovery with the minimum extra
traffic overhead by automatically adjusting the sender’s

1The open-source implementation is maintained at https://github.com/
litonglab/quic-art

Burst Loss Time

Bytes
Data Sent Data Acked Data Lost

Fig. 3: An example of loss burstiness in the wild.

1 2 3 4-5 6-8 9-12 13+
Burst Loss

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

PD
F 0 50 100 150 200 250 300

Burst Loss

0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

90th
95th
99th

(a) Burst size of loss

0 1 2 3 4 5 6 7 8 9 10
Retransmission Times

0
0.005

0.01
0.02
0.05

0.1
0.2
0.3
0.4

PD
F 0 1 2 3 4 5 6 7 8 9 10+

Retransmission Times

0.4

0.6

0.8

1.0

CD
F

(b) Maximum retransmission times

Fig. 4: (a) Burst loss distribution in the wild. The x-
axis is the number of continuously lost packets. (b) The
distribution of maximum retransmission times in the wild.

loss recovery capability. For example, ART reduces the
FCT by up to 34% for delay-sensitive transmissions
when suffering data reassembling starvation. ART also
improves up to 28% of goodput for throughput-intensive
transmissions when suffering receiving buffer starvation.
Furthermore, ART achieves up to 90% of lower redun-
dancy cost with considerable recovery performance (see
§VII).

II. LOSS IN THE WILD: A MEASUREMENT STUDY

Logs from our production network (i.e., the ByteDance
public cloud) are collected from a random sample over two
weeks. Each log corresponds to a QUIC connection, which
contains the size of a connection, sequence number, and packet
sending and loss information of multiple QUIC streams. We
analyze these logs and record the specific information of
packet loss, such as the times of loss events and the burst
size of the loss. We measure over 200,000 connections from
different application scenarios in different regions all around
the world.

A. Loss Shows Dynamics

We first explore the distribution of the loss rate (every 5
minutes) of each connection in different worldwide regions.
Figure 2(a) shows the results. Although there are regions with
similar average packet loss rates, they have different packet
loss rate deviations (i.e., the violin shapes are different). For
example, Brazil and Japan both have an average packet loss
rate of 3.78%, but Japan has the highest packet loss rate of
7.1% while Argentina has only 5.7%. Figure 2(b) further gives
an example of how the packet loss rate evolves over time.
Specifically, the loss rate is never constant and varies from
2% to 5% during 24 hours. This confirms that loss shows
dynamics in the wild.

Time
Sender

Receiver
Received

k=1
Lost
k=0

𝑇!"#$%&

k=2

𝑇'(")

Lost Packet
Ack

k : kth Retransmission Times

Fig. 5: An example of the retransmission loss.

B. Loss Shows Burstiness

Figure 3 gives an example of loss burstiness (denoted by
red blocks) in a randomly selected connection. We further
explore the burst loss distribution in the production network.
Figure 4(a) shows the results. Surprisingly, the probability of
only one packet being lost is not as high as imagined (i.e.,
37.2%), instead, the probability of losing multiple packages
(≥ 2) together accounts for a larger proportion (i.e., 62.8%).
Specifically, as illustrated in the sub-figure of Figure 4(a),
the 90th, 95th, and 99th percentile burst size of loss (i.e.,
the number of continuously lost packets) is 13, 27, and 125,
respectively, showing extremely bursty packet loss. Numerous
factors contribute to the emergence of the phenomenon of loss
burstiness. Here we provide readers with a duo of potential
explanations worthy of contemplation. First, it might be due
to the queue management strategy [6] or traffic handling
policy [13] employed by the Internet Service Provider (ISP).
Moreover, burst packet loss can also be caused by wireless
interference in unstable access networks of end users [14].

C. Retransmission Loss is Ubiquitous

A packet might be retransmitted more than once before
it is correctly received by the receiver. By counting the
number of occurrences of each frame according to the QUIC
stream offset, we can further analyze how many times each
packet was retransmitted before successfully received [15].
Given a connection, its maximum retransmission times can
be computed as the maximum value of retransmission times
among all packets in a connection. Figure 4(b) shows the
results of the distribution of the maximum retransmission
times in the production network. We find that the proportion
of connections with maximum retransmission times of two
or more exceeds 43%. Among them, a considerable portion
of the connections have certain packets that are retransmitted
even more than 10 times. This retransmission loss is harmful
to both delay-sensitive applications and throughput-intensitive
applications, as we will discuss next.

III. WIDE-AREA LOSS RECOVERY: ISSUES AND
CHALLENGES

Ideally, successful delivery of a lost packet should only
require a single retransmission to the receiver. However, our
previous measurement studies have shown that retransmission
loss is ubiquitous. Next, we will investigate the impacts
on transmission performance when a single retransmission
attempt is insufficient to successfully deliver a lost packet.

A. Delay-Sensitive Transmission Suffers From Data Reassem-
bling Starvation

Consider a distributed system that relies on RPC for inter-
process communication. If a critical RPC call is lost and
experiences a high recovery latency, the client’s request will
be delayed, and subsequent dependent operations may be
blocked. This can result in a significant increase in flow
completion time, negatively affecting the responsiveness and
overall performance of the service. Real-world scenarios, such
as financial trading platforms or online multiplayer games that
heavily rely on quick response times, can suffer from degraded
user experience and potential financial losses due to increased
recovery latency.

Under these circumstances, the prioritizing loss recovery
attempts to mitigate receiver-side waiting time (Twait) for the
lost data and enables delivery of the follow-up data (that has
already been received) to the application layer. As illustrated
in Figure 5, we define Twait as the duration between when a
packet is sent and when the packet is first received, and Tsingle

as the duration between when a packet is sent and when the
packet is detected lost. Then we have

Twait = K · Tsingle +
rtt

2
(1)

where rtt refers to the round-trip time (RTT) and K refers to
the retransmission times of a specific packet before success-
fully being received at the receiver. If a packet is never lost
and retransmitted, then K = 0. Given a certain loss detection
algorithm, we have

Tsingle ∝ rtt (2)

Furthermore, given the RTT, we have

Twait ∝ K (3)

Based on the above analysis, we infer that delay-sensitive
transmission suffers from data reassembling starvation in the
case of the large K. However, the current loss recovery
paradigms mainly rely on rapid loss detection (i.e., optimizing
Tsingle) while ignoring retransmission times (i.e., optimizing
K). For example, RACK [16] is regarded as the state-of-
the-art loss detection advancement that assures a relatively
deterministic Tsingle, i.e., Tsingle ≈ 1.25rtt. In this case,
Equation (1) is instantiated as Twait ≈ (1.25K + 0.5)rtt.

B. Throughput-Intensive Transmission Suffers From receiving
buffer Starvation

Transport protocols like TCP and QUIC [15] provide reli-
able and ordered byte-stream transmission. As a result, before
being handed off to upper applications, the subsequent packets
(stored temporarily in the receiver’s queue) of the lost packet
will be stalled in the receiving buffer until the “hole” (the lost
data sequence space) is filled via retransmissions. However,
retransmissions might be lost again. Since the receiving buffer
required by a connection is closely related to the maximum
times of retransmissions, we focus on the metric of Kmax,
the maximum value of K among all packets in a connection,
where K denotes the retransmission times of a specific packet.

London (L) Tokyo (T)
Iowa (I)

Sydney (S)

(a) Topology [17]

T-I S-L T-L S-I L-I S-T
Pipes

0
5

10
15
20
25
30

Ut
iliz

at
io

n
(%

) TCP BBR
TCP CUBIC

(b) Bandwidth utilization

Fig. 6: Pipes are verified not full but TCP only achieves
bandwidth utilization of less than 25%. Where bandwidth
(bw) is 1 Gbps, rtt ∈ [100, 300] ms, and average loss is
0.5%. The maximum receiving buffer of TCP is 16 MB in
the cloud end-hosts [17], [18].

Based on the above analysis, we infer that throughput-
intensive transmissions might suffer from receiving buffer star-
vation in the case of a large Kmax. This issue is unremarkable
for transmissions when both throughput and loss are low. How-
ever, when running under large-BDP and lossy network condi-
tions, the buffer starvation issues may significantly impact the
performance of throughput-intensive transmissions. Figure 6
shows an example of how high-throughput transmission bot-
tlenecks the receiving buffer in the Pantheon [18]. Based on
the fact that the receiving buffer is usually small (e.g., 16 MB
in the c5.xlarge instances of Amazon EC2) in modern wide-
area Linux servers. It is observed that buffer limitation makes
TCP only achieve bandwidth utilization of less than 25% even
when there is sufficient available bandwidth.

It’s worth noting that network operators often increase the
end-host buffer through protocol tuning to address the capa-
bility mismatch between loss recovery and high-throughput
requirements. However, this approach is ineffective when
operators only have control over one side of the network, such
as in public cloud services where CDN vendors cannot modify
the end devices.

In summary, it may cause both data reassembling starvation
and receiving buffer starvation when a single retransmission
attempt is insufficient to successfully deliver a lost packet
(i.e., when K > 1). Hence it becomes crucial to carefully
manage loss recovery at the sender side, minimizing K for
each loss when data reassembling is excessively delayed,
and minimizing Kmax for all the losses in the connection
when the end-host buffer is insufficient. These efforts would
provide a valuable contribution from the perspective of CDN
vendors, which encourages the development of ART, as we
will elaborate next.

IV. THE ART OVERVIEW

The main objective of ART is to ensure the successful
reception of each lost packet by the receiver, minimizing the
receiver-side waiting time of each packet. However, in order
to effectively implement ART in production networks where
cloud services (sender side) charge based on traffic volume, it
is vital to not only prioritize the quick recovery of lost packets
but also minimize redundancy cost and prevent any detrimental
impact on regular packet transmission. Striking a balance

Received

Time

Sender

Receiver

n=0 n=1 n=2

k=2

k=1

k=3

Lost
All

Lost

k=0

𝑇!"#$%&

k=4

k=…

𝑇'(")

n: nth Retransmission Round
Packet
Ack

k: kth Retransmission Times

Fig. 7: An example of the retransmission loss when
applying redundant retransmission. For this lost packet,
the retransmission times K = max(k) = 4 and the
retransmission round N = max(n) = 2.

between rapid recovery and efficient resource utilization is
crucial for the practicality of ART in production networks.

Conceptual definition. The fundamental concept behind ART
is to introduce redundancy during retransmissions, i.e., re-
dundant retransmission, merging the features of FEC and
ARQ. Instead of the legacy FEC that applies redundancy to
the original (unlost) packets, ART applies redundancy specif-
ically to the retransmitted (lost) packets themselves. When
considering redundant retransmissions, it is necessary to re-
evaluate the variability in waiting time on the receiver side
(represented by Twait). To address this, we propose a novel
concept called “retransmission round” (designated as N) to
replace the retransmission times (K) in Equation (1) when
computing Twait:

Twait = N · Tsingle +
rtt

2
(4)

where N refers to the retransmission round of a specific
packet before successfully being received at the receiver.
Figure 7 illustrates an example of the difference between N
and K, where n represents the nth retransmission round and k
represents kth retransmission times. For each packet, we have
N = max(n) and K = max(k). Similar to Kmax, we define
the maximum retransmission round (Nmax) for a connection
that transmits multiple packets as

Nmax = max(N) (5)

In the absence of redundancy, these two terms (N and K)
are essentially interchangeable. However, in the presence of
redundancy, the retransmission times will accumulate within
the same retransmission round. Specifically in the example of
Figure 7, the sender retransmits 3 replicas of the lost packet
(i.e., k = 1, 2, 3) during the first retransmission round (i.e.,
n = 1). Generally, whenever a packet is retransmitted, the
count of retransmission times for that packet increases by 1.
However, only when all retransmitted packets for a specific
packet in a complete retransmission round are identified as
lost, will the retransmission round for that packet be increased
by 1.

Redundancy adaptation. The redundancy level, denoted as
R, is defined as the number of replicas that should be resent
for a specific lost packet. Rn represents the redundancy level
within the nth retransmission round. For instance, in the case
of Figure 7, we have R1 = 3. We define the redundancy cost as

Redundancy

Adaptation

Replica

Scheduling

Loss

Detection

Feedback

Send

Feedback

Receive

Lost
Packet

Time

ACK

Data

Replicas

Sender Receiver

Fig. 8: Key modules in ART.

Received

Time

Sender

Receiver

65 us

PktNo=23

PktNo=21 PktNo=27

Lost

PktNo=18
PktNo: Packet Number

Packet
Ack

Packet 18 Loss Detected Redundancy
Adapater

Replica
Scheduler

Replica 1
Replica 2
Replica 3

Time 0us
Time 65us
Time 300us

235 us

Send

Lost Lost

Fig. 9: An example of the ART workflow.

the total number of replicas that are sent during transmission.
Initially, a naive approach for ART would be to use a fixed re-
dundancy level for all rounds, i.e., Rn = R (n = 1, 2, ..., N).
However, our deployment experiences have shown that this
fixed approach to redundant retransmission is suboptimal (high
redundancy cost or long recovery latency) due to the dynamic
nature of packet loss in real-world scenarios (see §V-A).
Consequently, we incorporate redundancy adaptation to allow
the redundancy level to vary dynamically. To achieve this, we
introduce the Redundancy Adapter, which gradually learns
the feature of loss dynamics and carefully selects the most
appropriate redundancy level for each retransmission round of
lost packets. This ensures that ART can adapt to the dynamics
of packet loss while minimizing the redundancy cost.

Replica scheduling. For each round of retransmission, more
than one replica might be injected into the network. Initially, a
naive approach for ART would be to send all the replicas (with
the same retransmission round) at once if the send window is
sufficient. However, our deployment experiences have shown
that this burst send pattern may fail to accelerate loss recovery
due to the burst nature of packet loss in real-world scenarios
(see §V-B), that is, a loss event usually contains multiple
consecutive losses, the back-to-back replicas might be all lost
again under a burst of losses. In this case, the redundant
replicas should be carefully scheduled. Consequently, we
introduce the Replica Scheduler, which adopts randomization
to enable the redundant replicas to be sent out in a random
number of sending cycles. This ensures that ART can adapt
to the burstiness of packet loss.

The architecture of ART. ART is a sender-side modification
to the protocol stack whose key modules are illustrated in
Figure 8. Particularly, once a loss is detected, ART adopts
redundancy adaption to compute the number of replicas of the
lost packet that should be retransmitted next. Given the number
of replicas, ART then adopts replica scheduling to determine
the specific time interval for sending out each replica from

0 2 4 6 8
Redundancy Level(#)

0
10
20
30
40

Re
du

nd
an

cy
 C

os
t(#

)

2% loss
5% loss
8% loss
10% loss

(a) Redundancy cost

0 2 4 6 8
Redundancy Level(#)

1
2
3
4
5
6
7

N
m

ax

2% loss
5% loss
8% loss
10% loss

(b) Nmax

Fig. 10: Cost and Performance of ART under different re-
dundancy levels, where bw = 100 Mbps and rtt = 100 ms.

the sender. To explain this more clearly, we further give an
example of the ART workflow in Figure 9. Assuming a packet
(packet number = 18) is detected lost. In this case, ART first
runs the redundancy adapter to compute the redundancy level
for packet 18, we assume redundancy level = 3. Then ART
runs the replica scheduler to determine when to send each
replica. For example, the 3 replicas should be sent in 0 us, 65
us, and 300 us, respectively. As a result, the replicas are sent
out with packet numbers 21, 23, and 27, respectively. Since the
3 replicas are sent at various intervals, it can greatly enhance
the likelihood of a successful retransmission.

V. DETAILED DESIGN

In this section, we give the detailed design of ART for its
practical deployment.

A. Redundancy Adapter

We first elaborate on the design of the Redundancy Adapter
by answering the following questions below.

Why dynamic redundancy level matters? To answer this
question, we conducted an investigation into the performance
of ART under different loss rates (p = 2%, 5%, 8%, 10%)
and different redundancy levels (R = 0, 3, 5, 8). As shown in
Figure 10(a), when the redundancy level increases, there is a
corresponding rise in the redundancy cost. On the other hand,
the redundancy levels also significantly impact the maximum
retransmission round (Nmax). As shown in Figure 10(b), the
higher the redundancy level, the lower the Nmax. Intuitively,
the optimal redundancy level should be set at the inflection
point. However, the experimental results demonstrate that the
inflection points vary with the loss rates. We then infer that
the redundancy level should be set dynamically according to
network dynamics. This greatly motivates the design of the
Redundancy Adapter, as we will elaborate below.

How to set redundancy level dynamically? Primarily, we
establish the replica loss rate (pr) by dividing the number of
lost replicas by the total number of sent replicas. While it
is acknowledged that redundancy levels should be adjusted
according to the loss rates, it is imperative to consider pr
instead of the general packet loss rate (p) for a more accurate
design of the Redundancy Adapter. In this paper, we propose
a sliding-window-based way to predict pr according to the
historical packet delivery information. We set up a bitmap

100 1 01 1 1 1 0

Old NewLqueue

Acked Lost

Fig. 11: An example of the sliding-window-based bitmap
queue. If a replica is acknowledged, a “0” is appended to
the queue. Otherwise, a “1” is appended to the queue.

𝐸 = 𝑅 ⋆ 1 − 𝑝!

Replica Number

Replica Loss Rate
𝐸<1

𝐸≥2

𝑅=𝑅+1

𝑅=𝑅−1

Noop Otherwise

Fig. 12: The design rationale of the Redundancy Adapter.

queue at the sender. As illustrated in Figure 11. When the
sender receives an acknowledgment for a redundant packet, a
“0” is appended to the queue. Otherwise, a “1” is appended to
the queue, indicating that the redundant packet is lost again.
In this case, pr is computed as the proportion of “1” in the
queue, i.e., pr = c

Lqueue
, where Lqueue is the queue length

measured in the number of packets (e.g., Lqueue = 10),
and c is the number of “1” in the queue. Then the expected
number of successfully delivered replicas (denoted as E) can
be computed as follows:

E = R · (1− pr) (6)

where R is the redundancy level within a retransmission
round. In general, to ensure the effectiveness of redundant
retransmission where we only send the number of replicas
that is exactly required by the loss recovery, we should keep
E ≈ 1. This is because the unnecessary traffic cost arises
when E > 1, and recovery latency arises when E < 1. To
accomplish this, a step-by-step online algorithm is applied. As
illustrated in Figure 12, when E < 1, then R = R+1; When
E ≥ 2, then R = R− 1; Otherwise, R remains unchanged.

B. Replica Scheduler

The redundant replicas might be lost together again when
burst losses occur. To withstand burst loss, we introduce the
Replica Scheduler to ensure prompt delivery of replicas to the
receiver. Instead of sending out all the replicas at once, the
Replica Scheduler disperses the multiple replicas into a certain
number of sending cycles (one cycle equals the interval of
sending one packet at a specific pacing rate). That is, replicas
are interspersed with normal packets.

Specifically, given multiple replicas of a specific lost packet,
we define the escape space (denoted by escape space) of this
lost packet as the total number of sent packets from starting
sending its first replica to finishing sending its last replica.
For example, as shown in Figure 13, for the traditional QUIC,

Replicas

Normal Packets
Burst SizeQUIC

W/o Scheduler

W/ Scheduler

𝐵!"#=5

Fig. 13: The design rationale of the Replica Scheduler.
Where schemes QUIC, W/o scheduler, and W/ scheduler
represent the traditional QUIC, the ART without Replica
Scheduler, and the ART with Replica Scheduler, respec-
tively.

we have escape space = 1. For ART without applying the
Replica Scheduler, the escape space of each packet equals the
redundancy level, i.e., escape space = R.

We use B to denote the burst size of loss during transmis-
sion. Intuitively, when B ≤ R, the Replica Scheduler is not
a mandatory measure that should be taken. However, when
B > R, ART depends on the Replica Scheduler to expand
the escape space, i.e., escape space ≥ B. This assures that at
least one replica “escapes” the burst loss and is successfully
delivered. On the other hand, all replicas should be sent in
one RTT to ensure an orderly control loop. Based on these
observations, we finally give the guideline of how to determine
the escape space as follows:

escape space = min(bdp, α ·Bmax) (7)

where bdp refers to the bandwidth and delay product, α refers
to a scaling coefficient (α ≥ 1), and Bmax refers to the
maximum burst size of the loss in the past several RTTs (e.g.,
5 ∼ 10 RTTs). Figure 13 shows an example of the ART
applying the Replica Scheduler, where Bmax = 5 and R = 3.
We can see that the distinctive responses of three scenarios
(i.e., QUIC, ART without Replica Scheduler, and ART with
Replica Scheduler) become evident when confronted with
burst loss. Notably, in this specific scenario, only ART fea-
turing the Replica Scheduler demonstrates resilience against
the ramifications of burst loss.

VI. IMPLEMENTATION

We implement ART in the user-space QUIC protocol based
on LSQUIC commit 850b0a3 [19], consisting of 600+ lines
of code [20]. ART only requires modifying the retransmission
logic at the sender without interfering with other components
such as congestion controllers.

For the Redundancy Adapter implementation, we reuse
the function of send ctl handle regular lost packet()
to generate replicas with newly assigned packet num-
bers. These replicas are incorporated into the packet
chain called po loss chain. In order to manage retrans-
mission rounds effectively, we add two additional vari-
ables to the packet properties. Specifically, the variable
po retrans times keeps track of the retransmission rounds,
while po retrans packet number records the packet num-
ber in each round. We also maintain a queue specifi-
cally designated to record the transmission states of repli-

cas. When an ACK for a replica is received (detected by
lsquic send ctl got ack()), or when the packet is identified
as lost (detected by send ctl detect losses()), the corre-
sponding states in the queue are updated accordingly.

For the Replica Scheduler implementation, we reuse the
alarm function of lsquic alarmset set() and add a new
alarm AL ART SCHE in the alarm set. We also include
an attribute called po expected sent to record the expected
time at which the next replica should be sent. When the
AL ART SCHE alarm expires, the Replica Scheduler sends
out the replicas according to their po expected sent. To de-
termine the value of po expected sent, we randomly select
a time interval less than escape space, which is updated
each retransmission round according to the max burst size.

VII. EVALUATION

In this section, we conducted experiments to investigate
the performance of ART in both the testbed and production
networks. We focused primarily on the following questions:
(1) What are the advantages of ART when compared with
existing technologies? (2) How does ART accelerate packet
loss recovery for delay-sensitive transmissions? (3) How does
ART accelerate packet loss recovery for throughput-intensive
transmissions? (4) What is the cost of using ART? And (4)
how does ART work in practice?

A. Methodology

Experiment setup. In our evaluation, we utilized two distinct
networks to comprehensively assess the performance of our
approach, namely: (1) Trace-driven testbed network using the
mahimahi [21] simulation software. This versatile software al-
lowed us to accurately replicate real-world network conditions
by replaying publicly available network traces. The credibility
and widespread adoption in numerous research papers [22],
[23] further solidify its suitability for our simulations. (2)
Production network deployment involved the implementation
of ART on a QUIC server, which was generously provided
by ByteDance CDN service. This deployment encompassed
a diverse array of network links and user profiles, providing
a comprehensive and practical assessment of our approach’s
effectiveness in real-world scenarios.

Schemes. Throughout our subsequent analyses, we compare
ART with the following baselines:

• QUIC: The traditional QUIC (LSQUIC commit 850b0a3
[19]) without ART or FEC. By default, QUIC adopts the
traditional ARQ where it retransmits only one replica at
a time when a packet is detected lost.

• OR3: The QUIC with OR3 [17], the pioneering approach
on redundant data transmission. Note that OR3 adopts a
variable redundancy level (R = 2n−1), where n denotes
the nth retransmission round.

• FEC: The QUIC with FEC, which adopts the block
codes [24] as the error correcting codes. The block codes
approach divides the packets into different blocks. The
redundancy ratio of FEC is quantified as the proportion

Better

Fig. 14: Overall performance comparison between ART
and other schemes. The network condition is set as bw =
100 Mbps and p = 4%.

between the count of regular data packets and the count of
redundant packets present in each block. For example, a
redundancy ratio of 9:1 means 9 data packets are used
to create 1 redundant packet. When one of these 10
packets in the block is lost, the 9 data packets can still
be recovered.

• We also introduce some variants of QUIC. For example,
QUIC (R = 1) refers to the QUIC that adopts a fixed
redundancy level (R = 1) and QUIC (R = 2n+1) refers
to the QUIC that adopts a variable redundancy level (R =
2n+ 1), where n denotes the nth retransmission round.

Traffic patterns. In our evaluation, we measure various types
of objects, encompassing both file transfers and RPC requests.
File transfers have been subjected to evaluation in both testbed
networks and production networks, whereas RPC requests
have exclusively undergone production-network measurement.
The size of RPC requests adheres to the actual body sizes
observed on a real-world platform, ensuring the authenticity
of our assessment. To ensure a comprehensive evaluation, we
have included a diverse range of file sizes, spanning from
tens of kilobytes to hundreds of megabytes, thus providing a
thorough analysis of the system’s performance across different
data loads.

Metrics. In delay-sensitive scenarios, our attention is directed
toward crucial metrics such as packet recovery time and FCT.
Conversely, in throughput-extensive scenarios, our primary
consideration centers around achieving optimal goodput. Fur-
thermore, in both of these contexts, meticulous scrutiny is
given to factors like the (maximum) retransmission rounds and
redundancy cost. The former serves as a reflection of perfor-
mance, while the latter provides insights into the associated
overhead.

B. Overall Performance

Before diving into the benefit details of applying ART,
we first explore the overall performance and cost of different
schemes.

Comparison with QUIC and OR3. The performance is
represented by the maximum retransmission round (Nmax)
and the cost is represented by the redundancy cost. We

200Mbps
100ms

10Mbps
100ms

10Mbps
20ms

200Mbps
20ms

0

2

4

6

8

10
Re

du
nd

an
cy

 C
os

t
Cost of ART
Cost of OR3

0.0

0.3

0.6

0.9

1.2

1.5

1.8

N m
ax

Nmax of ART
Nmax of OR3

(a) File size=1MB, p=1%

200Mbps
100ms

10Mbps
100ms

10Mbps
20ms

200Mbps
20ms

0.0

0.5

1.0

1.5

2.0

Re
du

nd
an

cy
 C

os
t

Cost of ART
Cost of OR3

0.0

0.3

0.6

0.9

1.2

N m
ax

Nmax of ART
Nmax of OR3

(b) File size=200KB, p=1%

Fig. 15: Performance and cost with a packet loss rate of
1%.

200Mbps
100ms

10Mbps
100ms

10Mbps
20ms

200Mbps
20ms

0

20

40

60

80

100

120

Re
du

nd
an

cy
 C

os
t

Cost of ART
Cost of OR3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N m
ax

Nmax of ART
Nmax of OR3

(a) File size=1MB, p=10%

200Mbps
100ms

10Mbps
100ms

10Mbps
20ms

200Mbps
20ms

0

5

10

15

20

25

30

35

Re
du

nd
an

cy
 C

os
t

Cost of ART
Cost of OR3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N m
ax

Nmax of ART
Nmax of OR3

(b) File size=200KB, p=10%

Fig. 16: Performance and cost with a packet loss rate of
10%.

compare the performance and cost between ART and multiple
QUIC variants by transferring 100MB files in the testbed with
bw = 100 Mbps, rtt = 30 ms, and p = 4%. Figure 14
shows the results. The findings from our investigation affirm
the superiority of ART in multiple aspects. Notably, it boasts
the smallest Nmax, outperforming all the other QUIC variants.
Additionally, ART exhibits a remarkable advantage by having
less redundancy cost when juxtaposed with its counterparts.
This demonstrates that ART is able to reduce the recovery
time of lost packets without imposing significant redundancy
costs.

Note that both OR3 and ART accelerate loss recovery,
however, ART achieves better performance-cost efficiency.
This is due to the adoption of the Redundancy Adaption
in ART. To explain this more clearly, we further explore
the differences between ART and OR3 under more types of
network conditions. As shown in Figures 15 and 16, we run
tests in the testbed with file sizes ranging from 200 KB to 1
MB, packet loss rate ranging from 1% to 10%. We observe that
ART substantially reduces the redundancy costs, especially in
scenarios with lower packet loss. For example in Figure 16,
when p = 10%, ART reduces the costs by 12% ∼ 40%.
While in Figures 15, when p = 1%, the reduction of costs
of ART increases to 75% ∼ 90%. This is because ART is
designed based on network feedback, adapting to the network
conditions, and requiring fewer replicas when the network
performs well. In contrast, OR3 relies solely on the packets
themselves and does not react to external network factors,
leading to nearly constant redundancy levels across various
packet loss rates.

Comparison with FEC. Since ART is proposed as an ARQ-
enhanced scheme that selectively incorporates FEC for lost

200Mbps
100ms

10Mbps
100ms

10Mbps
20ms

200Mbps
20ms

0

1

2

3

4

5

Re
du

nd
an
cy
 C

os
t

1e4

Cost of ART

Cost of FEC

0

20

40

60

80

100

120

140

160

FC
T(

s)

FCT of ART

FCT of FEC

Fig. 17: Overall performance comparison between ART
and FEC.

0 1 2 3 4 5
N

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(a) ∆N

0 200 400 600
Twait (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Twait = 3.23

Twait = 19.48
Twait = 78.48 90th

99th
50th

(b) ∆Twait

Fig. 18: (a) The distribution of the reduction of retrans-
mission rounds. ∆N = Nquic−Nart, where Nquic and Nart

denote the retransmission round of a packet in QUIC and
in ART, respectively. (b) The distribution of the reduction
of recovery latency. ∆Twait = T quic

wait − T art
wait, where T quic

wait

and T art
wait denote the recovery latency of a packet in QUIC

and in ART, respectively.

packets, it is necessary to compare the performance and cost
between ART and FEC. In this experiment, the redundancy
ratio of FEC is set to 9:1 to assure a relatively low redundancy
cost, the network condition is set as bw = 100 Mbps, rtt =
20 ms, and p = 4%. We investigate both the FCT as the
performance and the redundancy cost as the cost. Figure 17
shows the results. It reveals that, on the whole, ART does not
yield a noteworthy enhancement in FCT when juxtaposed with
FEC. However, it significantly reduces the redundancy cost,
minimizing the redundant packet occurrences in comparison
to FEC. This demonstrates that ART is able to achieve a good
trade-off between performance and cost.

C. Mitigating Data Reassembling Starvation of Delay-
Sensitive Transmissions

According to Equation (4), the delay-sensitive transmission
suffers from data reassembling starvation in the case of a large
N , the retransmission round of lost packets. To explore how
ART tackles this issue, we first investigate how ART reduces
N , and then investigate how ART reduces the loss recovery
latency Twait. We have conducted a comprehensive series of
measurements using the testbed to analyze the distributions
of N and Twait during the transmission of 100 MB files.
Specifically, the packet loss rate is varied within the range
of 1% to 10%. The bandwidth is varied within the range of
10 Mbps to 200 Mbps, while the RTT is set to span from 20
ms to 100 ms.

QUIC-Cubic QUIC-BBR QUIC-ART
Schemes

3
4
5
6
7
8
9

N
m
ax

Nmax

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Go

od
pu

t

Goodput

(a) Goodput and Nmax

2 8 16 32 64 128 256
Receive Buffer Size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Go

od
pu

t

QUIC-Cubic
QUIC-BBR
QUIC-ART

(b) Goodput

Fig. 19: (a) An example of the relationship between Nmax

and goodput, where bw = 100 Mbps, rtt = 300 ms, p = 5%,
and receiving buffer size = 8 MB. (b) Performance in the
case of receiving buffer starvation, where bw = 100 Mbps,
rtt = 300 ms, p = 5%.

Reducing retransmission rounds of lost packets. We com-
pute the reduction of the retransmission round (∆N) as
∆N = Nquic−Nart, where Nquic denotes the retransmission
round of a packet in traditional QUIC without applying ART
and Nart denotes the retransmission round of the packet in
QUIC applying ART. As shown in Figure 18(a), we explore
the distribution of ∆N by running tests with the traditional
QUIC and ART. It is noteworthy that we have tried our best to
make the measurement conditions similar for ART and QUIC
in each test. It is observed that in most cases ∆N keeps the
value of 0, this is because most losses can be recovered via
a single retransmission round. However, it also shows that
ART may significantly reduce the retransmission rounds of
lost packets, especially in the worst cases. For example, ∆N
is up to 5 when the packets are excessively lost.

Reducing loss recovery latency. We compute the reduction of
the loss recovery latency (∆Twait) as ∆Twait = T quic

wait−T art
wait,

where T quic
wait denotes the recovery latency of a packet in

QUIC without applying ART and T art
wait denotes the recovery

latency of the packet in QUIC applying ART. As shown
in Figure 18(b), we explore the distribution of ∆Twait by
testing the traditional QUIC and ART. It is observed that
ART significantly reduces the recovery latency of lost packets.
Specifically, the 50th, 95th, and 99th percentile ∆Twait are
3.23 ms, 32.83 ms, and 78.48 ms, respectively. Compared with
the magnitude relative to RTT (i.e., [20, 100] ms), this shows
remarkable recovery latency reduction.

In summary, our analysis demonstrates a strong alignment
between the distributions of Twait and N , which provides
strong validation for Equation (4). This alignment strongly
suggests that an effective reduction in N directly translates to
a corresponding decrease in Twait.

D. Mitigating Receiving Buffer Starvation of Throughput-
Intensive Transmissions

The throughput-intensive transmission suffers from receiv-
ing buffer starvation in the case of a large Nmax, the maximum
retransmission round among all lost packets. To explore how
ART tackles this issue, we first investigate how ART reduces
Nmax, and then investigate how ART improves the goodput.

0.0 0.2 0.4 0.6 0.8
Overhead(%)

ART

FEC

Fig. 20: Comparison of extra CPU overhead between ART
and FEC.

Reducing maximum retransmission round. Figures 15 and
16 illustrate the average value of the maximum retransmission
rounds under different network conditions. In Figure 15, when
p = 1%, ART’s reduction of Nmax varies across different
network environments, ranging from 3% to 16% for the
transmission of 200KB-sized files, and from 13% to 16% for
the transmission of 1MB-sized files. Similarly, in Figure 16,
when p = 10%, ART’s reduction of Nmax varies across
different network environments, ranging from 7% to 26% for
200KB-sized files and from 9% to 13% for 1MB-sized files.
We can conclude that OR3 is already quite excellent in terms
of the maximum retransmission rounds metric. However, our
comparison experiments show that there is still room to reduce
this metric.

Improving goodput. As shown in Figure 19(a), we give
an example of the relationship between Nmax and goodput,
where bw = 100 Mbps, rtt = 300 ms, p = 5%, and
receiving buffer size = 8 MB. The average Nmax is obtained
from 100 runs of each scheme. It is demonstrated that ART
greatly increases the goodput (orange line) by decreasing the
Nmax (blue dashed line). As mentioned in §III, a smaller
Nmax alleviates receiving buffer starvation. Figure 19(b) fur-
ther shows the case of how ART performs under different
receiving buffer sizes. It is observed that ART still fills up the
pipe when the receiving buffer size is insufficient for QUIC.
In particular, ART improves up to 28% of goodput when
receiving buffer size = 8 MB. We believe that this can be
attributed to ART’s efficient loss recovery.

In summary, our analysis demonstrates a strong alignment
between goodput and Nmax, which strongly suggests that an
effective reduction in Nmax directly translates to a correspond-
ing improvement in goodput.

E. The CPU overhead of Using ART

ART is a lightweight packet loss recovery solution. It does
not impose a large computational overhead on the CPU. To
demonstrate this, we use two machines to act as the sender and
the receiver. We set QUIC to run on a single core at the sender
side. The CPU utilization of running QUIC, ART, and FEC on
the sender side was counted separately with the packet loss rate
set to a constant value of 5% without limiting the bandwidth
and delay. As shown in Figure 20, the use of ART brings about
an additional CPU consumption of 0.18% and FEC brings
about an additional consumption of 0.92% compared to the
traditional QUIC (without applying any additional means of

2 5 10 15 20 30 40 50
p (%)

10

20

30
Op

tim
iza

tio
n

Ra
tio

(%
)

(a) Optimization ratio

30 50 75 80 90 95 99
Percentile

0

1

2

3

4

FC
T(
10

3 m
s)

QUIC
ART

(b) FCT ranges

Fig. 21: Performance in real-world deployment. The op-
timization ratio is computed as FCTquic−FCTart

FCTquic
, where

FCTquic and FCTart denote the FCT of QUIC and ART,
respectively.

packet loss recovery). This reveals that the CPU overhead of
using ART is negligible in most cases.

F. Real-world Deployment

To verify that ART indeed accelerates packet recovery
speed, we used the actual FCT in the production network as
our measurement metric. Particularly, we compute the opti-
mization ratio as FCTquic−FCTart

FCTquic
, where FCTquic denotes

the FCT of QUIC without applying ART and FCTart denotes
the FCT of QUIC applying ART.

Setup. We conducted comprehensive testing of two key
scenarios: RPC transmission and small file downloading. In
the RPC transmission scenario, we analyzed data from 3.3
million QUIC connections spanning an entire day on a 4G
Mobile Network. This data provided valuable insights into the
performance and efficiency of the RPC requests. For the small
file transfer scenario, where each file size was approximately
3MB, we collected real-network data from users located in
diverse geographical areas. The data was gathered using the
Bonree [25] platform and comprised over 26,000 requests
spanning a week. Notably, these clients generated transfer
requests at an impressive rate of 100 times per second.

Result. Figure 21(a) presents the average FCT improvement
proportion of ART over native QUIC in an RPC transmission
scenario under varying packet loss rates. The graph demon-
strates that the optimization effect becomes more pronounced
as the packet loss rate increases, with improvements reaching
approximately 34%. This phenomenon can be attributed to
the diminished effectiveness of the loss recovery algorithm
at higher packet loss rates, and ART effectively compensates
for this deficiency. Figure 21(b) provides a comparison of
FCT across different quantiles. Additionally, in the small file
downloading scenario, we observed an overall reduction in
FCT of about 2%. Our deployment experience further shows
that this reduction is especially significant for users with higher
access bandwidth.

VIII. RELATED WORK

FEC-based loss recovery. The field of packet loss recovery
has seen numerous works related to FEC [6], [26]–[28].
However, most of them can not effectively address the issue

of burst packet loss [26]–[28]. Although some state-of-the-art
work [6] has provided some solutions to handle burst packet
loss, they involve a high implementation complexity and
require corresponding modifications on the client side, making
them unsuitable for multi-vendor scenarios. In contrast, ART
is a lightweight design that only requires server-side (sender-
side) modification.

ARQ-based loss recovery. The TCP stack has proposed a
series of ARQ-based loss recovery improvements [16], [22],
[29]–[34]. Among them, FACK [29], RACK-TLP [16], and
TACK [22] have been proven to significantly reduce loss
detection time in many cases [35]. In addition to these sender-
side loss detection algorithms, QUIC [15] and TCP-TACK [34]
share the same idea of detecting loss at the receiver side
according to the monotonically increasing packet number.
These works, however, mainly rely on rapid loss detection
(i.e., optimizing Tsingle in Equation (4)). In contrast, this paper
focuses on reducing retransmission round (i.e., optimizing N
in Equation (4)), which is also a key influence factor in ARQ-
based loss recovery.

Combining FEC and ARQ. There is an increasing trend
of combining FEC and ARQ [36], [37]. However, most of
them fall into the category of dynamically switching between
the two paradigms according to application requirements or
network conditions. ART shares the same idea of combining
FEC and ARQ but operates in a different way. Particularly,
ART applies redundancy to only lost packets instead of unlost
packets. There also exist some studies that employ the idea
of redundancy, most of which are applied in wireless sensor
networks [38]–[41]. Furthermore, their redundancy level is
often set to a fixed value [42]. The most related work to
ART is OR3 [17], which adopts a rule-based way to decide
the redundancy level according to the retransmission round.
However, our comparison experiments show that there is still
room to reduce the recovery time and redundant traffic due to
the dynamics of packet loss in the wild.

IX. CONCLUSION

Retransmission itself does not hinder slow recovery, it is the
loss of retransmission that becomes the real obstacle. Simple
but useful, ART is proposed as an ARQ-enhanced scheme
that selectively incorporates FEC for lost packets without any
modifications to the receiver/client side. The primary goal of
ART is to address data reassembling starvation and receiving
buffer starvation by considerably reducing the recovery time
of lost packets without imposing significant redundancy costs.
The real-world deployment experience reaffirms the viability
of ART as an advantageous option for CDN vendors seeking
to enhance their competitiveness in a diverse and competitive
market landscape with multiple suppliers.

ACKNOWLEDGMENT

We thank the anonymous reviewers and our shepherd, Toru
Hasegawa, for their valuable comments. We are also grateful
for the conversations with and feedback from Wei Li, Jupeng
Zhang, Zhi Long, and Kezhi Wang.

REFERENCES

[1] Y. Zhang, K. Xu, H. Wang, Q. Li, T. Li, and X. Cao, “Going fast
and fair: Latency optimization for cloud-based service chains,” IEEE
Network, vol. 32, no. 2, pp. 138–143, 2017.

[2] Y. Zhao, K. Xu, H. Wang, B. Li, and R. Jia, “Stability-based analysis
and defense against backdoor attacks on edge computing services,” IEEE
Network, vol. 35, no. 1, pp. 163–169, 2021.

[3] B. Wu, T. Li, C. Luo, C. Ouyang, X. Du, and F. Wang, “Autoplex:
inter-session multiplexing congestion control for large-scale live video
services,” in ACM SIGCOMM Workshop (NetAI), 2022, pp. 1–6.

[4] S.-H. Chan, X. Zheng, Q. Zhang, W.-W. Zhu, and Y.-Q. Zhang, “Video
loss recovery with fec and stream replication,” IEEE Transactions on
Multimedia, vol. 8, no. 2, pp. 370–381, 2006.

[5] F. Michel, Q. De Coninck, and O. Bonaventure, “QUIC-FEC: Bringing
the benefits of forward erasure correction to QUIC,” in IEEE IFIP
Networking, 2019, pp. 1–9.

[6] M. Rudow, F. Y. Yan, A. Kumar, G. Ananthanarayanan, M. Ellis, and
K. Rashmi, “Tambur: Efficient loss recovery for videoconferencing via
streaming codes,” in USENIX NSDI, 2023, pp. 953–971.

[7] D. BertsekasandR, “Gallager, data networks,” Prentice-Hall, vol. 1,
no. 99, p. 2, 1992.

[8] B. S. Bakshi, P. Krishna, N. H. Vaidya, and D. K. Pradhan, “Improving
performance of TCP over wireless networks,” in IEEE ICDCS, 1997,
pp. 365–373.

[9] D. Barman, I. Matta, E. Altman, and R. El Azouzi, “TCP optimization
through FEC, ARQ, and transmission power tradeoffs,” in Springer
WWIC, 2004, pp. 87–98.

[10] J. Chen, W. Tan, L. Liu, X. Hu, and F. Xu, “Towards zero loss for TCP
in wireless networks,” in IEEE IPCCC, 2009, pp. 65–70.

[11] T. Li, K. Zheng, and K. Xu, “Acknowledgment on demand for transport
control,” IEEE Internet Computing, vol. 25, no. 2, pp. 109–115, 2021.

[12] Y. Arda and J.-C. Hennet, “Inventory control in a multi-supplier system,”
IJPE, vol. 104, no. 2, pp. 249–259, 2006.

[13] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“Bbr: Congestion-based congestion control,” Commun. ACM, vol. 60,
no. 2, p. 58–66, 2017.

[14] D. Baltrunas, A. Elmokashfi, A. Kvalbein, and Alay, “Investigating
packet loss in mobile broadband networks under mobility,” in IFIP
Networking, 2016, pp. 225–233.

[15] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman,
J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamilton,
V. Vasiliev, W.-T. Chang, and Z. Shi, “The quic transport protocol:
Design and internet-scale deployment,” in ACM SIGCOMM, 2017, p.
183–196.

[16] Y. Cheng, N. Cardwell, N. Dukkipati, and P. Jha, “The RACK-TLP
Loss Detection Algorithm for TCP,” RFC 8985, Feb. 2021. [Online].
Available: https://www.rfc-editor.org/info/rfc8985

[17] H. Xie and T. Li, “Revisiting loss recovery for high-speed transmission,”
in IEEE WCNC, 2022, pp. 1987–1992.

[18] F. Y. Yan, J. Ma, G. D. Hill, D. Raghavan, R. S. Wahby, P. Levis, and
K. Winstein, “Pantheon: the training ground for internet congestion-
control research,” in USENIX ATC 18, 2018, pp. 731–743.

[19] L. Tech, “LSQUIC,” https://github.com/litespeedtech/lsquic/commit/
850b0a3d100b2abe89cf054a9f8d13054fac34a3, 2022.

[20] LitongLab, “QUIC-ART,” https://github.com/litonglab/quic-art, 2023.
[21] R. Netravali, A. Sivaraman, K. Winstein, S. Das, A. Goyal, and

H. Balakrishnan, “Mahimahi: A lightweight toolkit for reproducible web
measurement,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, p.
129–130, 2014.

[22] T. Li, K. Zheng, K. Xu, R. A. Jadhav, T. Xiong, K. Winstein, and
K. Tan, “Tack: Improving wireless transport performance by taming
acknowledgments,” in ACM SIGCOMM, 2020, pp. 15–30.

[23] V. Arun and H. Balakrishnan, “Copa: Practical delay-based congestion
control for the internet,” in ANRW, 2018, p. 19.

[24] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
SIAM, vol. 8, no. 2, pp. 300–304, 1960.

[25] bonree, “Bonree,” https://www.bonree.com, 2008.
[26] K. Park and W. Wang, “Afec: an adaptive forward error correction

protocol for end-to-end transport of real-time traffic,” in IEEE ICCCN,
1998, pp. 196–205.

[27] M. Koul and K. Rao, “An n+1 redundant gop based fec algorithm for
improving streaming video quality due to packet loss and delay jitter,”
in ICET, 2007, pp. 102–107.

[28] H. Lundqvist and G. Karlsson, “Tcp with end-to-end fec,” in IZS, 2004,
pp. 152–155.

[29] M. Mathis and J. Mahdavi, “Forward acknowledgement: refining tcp
congestion control,” Acm Sigcomm Computer Communication Review,
vol. 26, no. 4, pp. 281–291, 1996.

[30] E. Blanton, “Rfc 4653: Improving the robustness of tcp to non-
congestion events,” IETF, 2006.

[31] M. Allman, K. Avrachenkov, U. Ayesta, J. Blanton, and P. Hurtig, “Rfc
5827: Early retransmit for tcp and stream control transmission protocol
(sctp),” IETF, 2010.

[32] P. Hurtig, A. Brunstrom, A. Petlund, and M. Welzl, “Rfc 7765: Tcp and
stream control transmission protocol (sctp) rto restart,” IETF, 2016.

[33] E. Blanton, M. Allman, L. Wang, I. Jarvinen, M. Kojo, and Y. Nishida,
“Rfc 6675: A conservative loss recovery algorithm based on selective
acknowledgment (sack) for tcp,” IETF, 2012.

[34] T. Li, K. Zheng, K. Xu, R. A. Jadhav, T. Xiong, K. Winstein, and
K. Tan, “Revisiting acknowledgment mechanism for transport control:
Modeling, analysis, and implementation,” IEEE/ACM TON, vol. 29,
no. 6, pp. 2678–2692, 2021.

[35] E. Blanton, M. Allman, K. Fall, and L. Wang, “Rfc 3517: A conservative
selective acknowledgment (sack)-based loss recovery algorithm for tcp,”
IETF, 2003.

[36] F. Michel, A. Cohen, D. Malak, Q. De Coninck, M. Médard, and
O. Bonaventure, “Flec: Enhancing quic with application-tailored relia-
bility mechanisms,” IEEE/ACM TON, vol. 31, no. 2, pp. 606–619, 2023.

[37] T. Porter and X.-H. Peng, “Effective video content distribution by
combining tcp with adaptive fec coding,” in IEEE BMSB, 2010, pp.
1–5.

[38] H. Wen, C. Lin, F. Ren, Y. Yue, and X. Huang, “Retransmission or
redundancy: Transmission reliability in wireless sensor networks,” in
IEEE MASS, 2007, pp. 1–7.

[39] H. Wen, C. Lin, F. Ren, H. Yang, T. He, and E. Dutkiewicz, “Joint
adaptive redundancy and partial retransmission for reliable transmission
in wireless sensor networks,” in IEEE IPCCC, 2008, pp. 303–310.

[40] T. Li, J. Liang, D. Wang, Y. Ding, K. Zheng, X. Zhang, and K. Xu, “On
design and performance of offline finding network,” in IEEE INFOCOM,
2023, pp. 1–10.

[41] Y. Ding, T. Li, J. Liang, and D. Wang, “Blender: Toward practical
simulation framework for ble neighbor discovery,” in ACM MSWiM,
2022, pp. 103–110.

[42] J. Zhu and S. Roy, “An adaptive two-copy delayed sr-arq for satellite
channels with shadowing,” in IEEE VTC, 2002, pp. 849–853.

